
JOINT CENTER FOR ULTRAVIOLET ASTRONOMY

INTERNATIONAL AGREEMENT BETWEEN THE **RUSSIAN FEDERATION** AND **SPAIN** ON COOPERATION FOR THE PEACEFUL USE OF THE ULTRATERRESTRIAL SPACE (2006).

THE **SPACE TELESCOPE WSO-UV** IS THE **MAIN COLLABORATION** IN THIS FIELD BETWEEN SPAIN AND THE RUSSIAN FEDERATION.

BETWEEN **2007 AND 2009** THREE INTERNATIONAL AGREEMENTS ARE SIGNED BETWEEN SPAIN AND THE RUSSIAN FEDERATION TO REGULATE THIS COLLABORATION: **GROUND SEGMENT** DEVELOPMENT, **TIME SHARING POLICY**, CONTRIBUTION OF THE **IMAGING INSTRUMENT** TO THE PAYLOAD BY SPAIN.

THE UNIVERSIDAD COMPLUTENSE DE MADRID AND THE Институт астрономии Российской академии наук HAVE SHARED THE SCIENTIFIC RESPONSABILITY FOR THE PROJECT SINCE 2007.

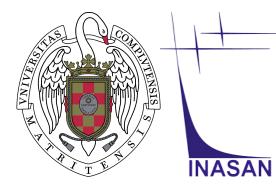
- ✤ SUPPORT TO THE NATIONAL AGENCIES ON THE SUPERVISION OF THE PROJECT
- ✤ SUPPORT TO THE NATIONAL SCIENTIFIC COMMUNITIES TO PARTICIPATE IN THE PROJECT
- ✤ JOINT DEVELOPMENT OF TECHNICAL WORK PACKAGES
- ✤ JOINT ORGANIZATION OF ACTIVITIES: CONFERENCES, MEETINGS, WORKSHOPS...
- JOINT PARTICIPATION IN NATIONAL AND INTERNATIONAL MEETINGS
- SHARED RESPONSABILITIES: SCIENCE OPERATIONS CENTER, IMAGERS, SUPPORT TO THE INTERNATIONAL SCIENTIFIC COMMUNITY

INASAN

JCUVA

Joint Center for Ultraviolet Astronomy

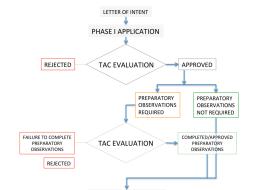
The JCUVA activities derive from the general collaboration agreement signed by Spain and the Russian Federation in 2007, aimed at the development of the World Space Observatory-Illumialat (MCO IN) and from the parament signed in 2017



JNIVERSIDAI COMPLUTENSE

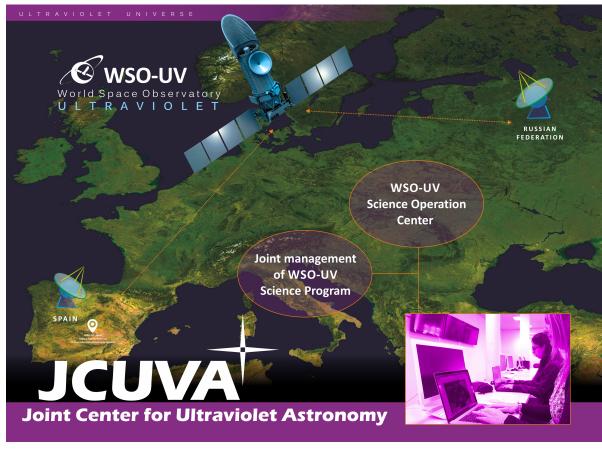
MADRID

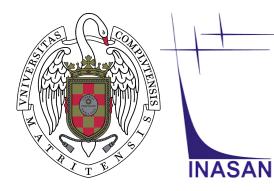
INASA

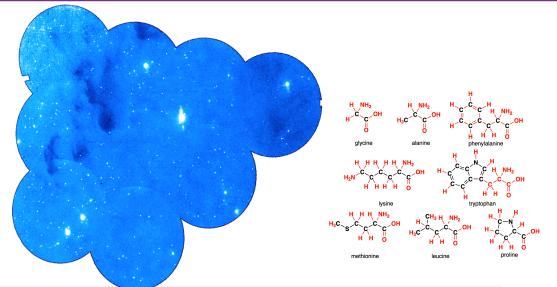

ETC (Exposure Time Calculator)

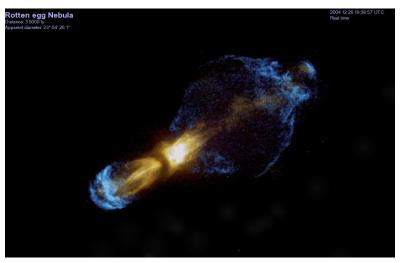
The Spanish WSO-UV Team at the Universidad Complutense de Madrid has developed an Exposure Time Calculator (ETC) for FCU. The ETC allows the astronomers to evaluate the observing time needed for a given scientific observation. FCU ETC allows computing the exposure time needed to reach an specific signal-tonoise ratio (S/N) for a given observation, or viceversa. FCU ETC is available here. The user's manual can be downloaded as a PDF.

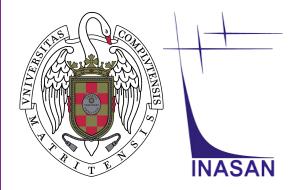
• FUV		NUV	O NUV		
Mode:					
 Image mode Spectroscopy n 	sode				
filters wheel (1) for fux channel		Editors whead (1) for muy channel.		
open T		open 🔻			
Filters wheel (2) for fuv channel.		Filters wheel (2) for muy channel.		
open 🔹		open 🔹			
input data:					
	Line center (Å)	FWHM (Å)	Max Flux (erg cm ⁻² s	⁻¹ Å ⁻¹) Continuum flux	
Spectral line:	1400	20	1e-13	1e-14	
 Black body temperature: 	10000	Kelvin	10	Vmag	
 A flat continuum: 	1e-14	erg cm ⁻² s ⁻¹ Å ⁻¹			
 Upload spectral file: 	Seleccionar archi	vo Ningún archivo se	leccionado		
Kurucz models with temperatur	e: O3V - 45000t - 45	g • and Vmag 10			
Background levels (only none avail	lable):				
None Standard (zodiacal)	Total (zodiacal+earth s	hine+airglow)			
Upload background: Seleccio	nar archivo Ningún	archivo seleccionado			
Parameters:					
 Exposure time in seconds 		100			
 Signal to noise ratio 		10			
Wavelength -only in spectroscopy	mode- (λ): 1400	Å			
				submit	







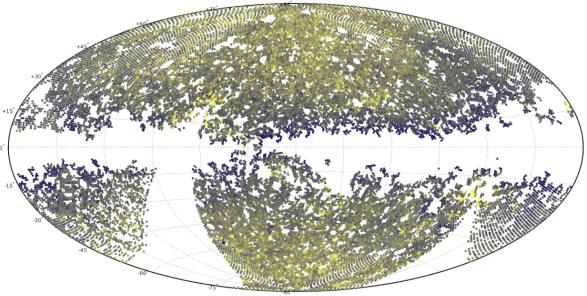

PHASE II APPLICATION


DIFFUSE MATTER IN SPACE - ULTRAVIOLET SOURCES

JCUVA Ultraviolet Astronomy

Access to the ultraviolet (UV) range of the electromagnetic spectrum is fundamental for astrophysics, from the study of life emergence environments to the understanding of chemical evolution and mixing for the last 10,000 million years of the Universe, about 80% of the Universe life. However, this access is severely limited because the Earth's atmosphere blocks the UV radiation coming from the space. Therefore, UV observatories must operate in the space, outside this natural filter.

Determining the composition and the distribution of the intergalactic matter is fundamental to understand the nature of the dominant forces in the Universe, the nature of the dark matter and the chemical evolution of the Universe. The Ultraviolet astronomy is also fundamental to study stars and planetary atmospheres. The study of extrasolar planet transits provides important information on the planetary atmospheres and their interaction with the parent star. Finally, UV spectral wavelengths are also essential to investigate the astronomical engines, plasma engines which are capable of accelerating ionized gas up to relativistic velocities.



TRAINING THE FUTURE!

