

STATUS WSO-UV SPAIN - OCTOBER 2017-

Ana I Gómez de Castro

JCUVA / AEGORA Group – 26th October 2017

JCUVA (

- INSTRUMENTATION PARTICIPATION IN THE FCU CONSORTIUM
- SCIENTIFIC OPERATIONS DEVELOPMENT OF SOFTWARE TO SUPPORT THE INTERNATIONAL CORE-PROGRAM CALL
- CORE PROGRAM CONSORTIA FOR THE "PREPARATORY OBSERVATIONS CAMPAIGNS"

PARTICIPATION IN FCU DESIGN AND DEVELOPMENT

FCU FUV CHANNEL DESIGN
DETECTOR CONTRACT (KICK OFF DECEMBER 2017)

FCU DESIGN: FUV CHANNEL

M1 tilt slightly increased to free pupil space.

SPOT DIAGRAM (CIRCLES ARE 3 PIXELS DIAMETER)

IMAGING MODE: MgF2 extra plate for focus Pupil free position **SPECTRAL MODE:** LiF prism R 600 at 1210 A

JCUVA/AEGORA Group 26th October 2017

SPECTRAL MODE: CHARACTERISTICS

Central field		R given in three pix at 15micron /pix				
Lambda, nm	PSF ee80		Total elemento*	Disp nm/micra	R	iillimeter
						M 0000
121.5	20		45		600	46.0
1305	21		45		336	Scale:
1335	21		45		285	<u></u>
1402	21		45		202	Aperture Di
1550	22		45		114	NOMINAL 22/12/2016 Surface 29:
1640	22		45		95	Ray X Min = Ray Y Min = Max Radius=

PSF SIZE is defined by encircling 80% of the energy in the Y axis (<< 3 pixels). Hence, size of the resolution element: 3 pix, or 45 micras. R varies by less than 1% for different positions in the field

DISPERSIVE ELEMENTS: PRISMS PROPERTIES

SPECTRAL MODE: SIO2 PRISM R-> 600 AT 1550A

JCUVA/AEGORA Group 26th October 2017

FCU DETECTOR

PLANNING

Entrega de la información detallada del modelo estructural y térmico para su desarrollo por INASAN: septiembre 2018

Entrega del modelo de ingeniería para cualificación (modelo y equipo de apoyo de tierra): septiembre de 2019

Entrega del modelo de vuelo (modelo y equipo de apoyo de tierra): mayo de 2020 DELIVERY FLIGHT MODEL

MODES OF OPERATION

- PDD can be commanded into 2 states, ON state (power applied) and OFF state (power removed).
- When the channel is in the ON state it can be commanded into 6 operational modes:
- Standby (MCP and HVPS are off, TC/TM works fully)
- ACCUM mode full-frame readout
- ACCUM mode region-of-interest readout
- TIME-TAG mode full-frame readout
- TIME-TAG mode region-of-interest readout
- TEST mode (TC/TM works fully, calibration, testing support (debug access..), maintenance (software, purging...))
- When entering the ON state the channel will be default to standby mode

SENSITIVITY REQUIREMENTS

FCU-PPD-EOP-0010	The FUV channel will operate over the spectral range 115nm-176nm
FCU-PPD-EOP-0020	The size of the photosensitive area shall be greater than or equal to 30 mm in diameter (round)
FCU-PPD-EOP-0030	FUV detector resolution (PSF FWHM) shall be less than 25 μ m (TBC) at 120 nm and less than 15 μ m (TBC) at 175 nm.
FCU-PPD-EOP-0040	The quantum Efficiency at 120 nm shall be greater than or equal to 20 %
FCU-PPD-EOP-0050	The quantum efficiency at 150 nm shall be greater than or equal to 15 %
FCU-PPD-EOP-0060	The quantum Efficiency at 175 nm shall be greater than or equal to 5 %
FCU-PPD-EOP-0070	The quantum Efficiencyshall not deviate more than 1% from its nominal value at +20C over the detector temperature operation range.
FCU-PPD-EOP-0080	The quantum Efficiency for wavelength greater than 200nm shall beless than 10 ⁵ .
FCU-PPD-EOP-0090	In the region-of-interest mode, the PDD radiometric non-linearity shall be lower than 10% for incoming fluxes of 450 cps (TBC) over an area of 60μmx60μm (TBC) of the MCP input.
FCU-PPD-EOP-0100	In the full-frame readout mode, the PDD radiometric non-linearity shall be lower than 10% for incoming fluxes of 5 cps (TBC) per pixel over the full frame.
FCU-PPD-EOP-0110	In the full-frame readout mode, the FUV detector radiometric non-linearity shall be lower than 1% for incoming fluxes of 200,000 cps (TBC) over the active area of the MCP input.
FCU-PPD-EOP-0120	The FUV detector shall withstand exposure to incoming fluxes of 450 cps (TBC) over an area of 60 μm^2 (TBC) of the MCP input.
FCU-PPD-EOP-0130	The FUV detector geometric distortion shall be modelled on-ground so that the distortion modelling error is less than 2µm (TBC) with respect to the MCP input.
FCU-PPD-EOP-0140	It shall be able to change the location of the region of interest in the detect or during the tests and during the mission lifetime.
FCU-PPD-EOP-0150	The dynamic range in ACCUM mode shall be greater than or equal to 10000:1
FCU-PPD-EOP-0160	The Photo Response Non-Uniformity shall be less than 2% at 150 nm
FCU-PPD-EOP-0170	The photometric instability shall not be more than 3% for ten hours
FCU-PPD-EOP-0180	The photometric instability shall not be more than 5% for one month
FCU-PPD-EOP-0190	The geometric stability of the received image in the whole range of the input signal, shall be <5 microns on photocat hode
FCU-PPD-EOP-0200	Temporal resolution in TIME-TAG mode should me no less than 4 ms
FCU-PPD-EOP-0210	Datation accuracy in TIME-TAG mode should me no less then 0.4 ms
FCU-PPD-EOP-0220	At the start of service the dark current shall not be greater than 10 cps/cm2 at 20C
FCU-PPD-EOP-0230	At the end of service the dark current shall not be greater than 20 cps/cm2 at 20C

PARTICIPATION IN SCIENTIFIC OPERATIONS

DESIGN AND SOFTWARE DEVELOPMENT SUPPORT THE COMMUNITY IN CALLS RELATED ACTIVITIES

Proposal Life Cycle: Is the period lasting from the application for observing time, after the announcement of opportunity by the WSO-UV International Observatory, to the final release of the data to the PI.

The WSO-UV Core Programme Team. 4/5 scientists with the following responsibilities:

- <u>Reviewing the CP Management Plan in all its dimensions.</u> To assess in detail the resources available in the CP Teams (manpower, expertise, hardware, and software), and whether they are adequate to the demands of their proposal. The WCPT also evaluates the proposed data (HLSD) products to be delivered to WSO-UV and whether they are suitable to fulfil the goal of serving a broad community.
- Taking part in the science verification of WSO-UV and collaborating to finalise PHASE2 tools
- Participation to the definition of the WSO-UV standard calibration plan, as well as the configuration of the Quality Control (QC) parameters in the pipeline.
- <u>Support the PI's to optimize the scheduling of the observations (Phase 2).</u> To ensure that the survey strategy (dither size and pattern, tiling, field selection, sky conditions, moon phase, etc.) is compatible with the attributes of WSO-UV, and with the goals of the respective CP.
- <u>Basic monitoring the progress of the CP.</u> To oversee the data transfer from the Observatory to the teams, to monitor PHASE 2 progress, delivery of data products from the CP Teams to the WSO-UV archive, in terms of keeping to the agreed upon delivery schedule, product types, and quantity.
- <u>Validating Survey Data Products</u>. The WCPT will act as a referee and will base its assessment of the data quality of the survey products, on the quality control parameters, and the detailed reports provided by the CP teams.
- Issuing and updating guidelines and WSO-UV standards for ingestion and digestion of data products by the WSO-UV archive.

Planning

May 2018	Call for letters of intent for the WSO-UV core program
July 2018	Deadline for the submission of letters of intent for WSO-UV core program
September 2018	Letters of intent are made public.
September 2018	Release of the call for Phase I proposals
November 2018	Deadline for submission of Phase I proposals
January 2019	TAC releases the list of approved Phase I proposals
January 2020	Call for re-submission of core program proposals requiring preparatory observations
March 2020	Deadline for re-submission of core program proposals
June 2020	TAC approves the final list of proposals
June 2020	Call for Phase II is released
January 2021	Phase II closes
June 2021	Target list complete /released/ scheduling ready
December 2021	Launch

CORE PROGRAM CONSORTIA

DESIGN AND SOFTWARE DEVELOPMENT SUPPORT THE COMMUNITY IN CALLS RELATED ACTIVITIES

CORE PROGRAM PROPOSALS: MONITORING A STELLAR FIELD (KEPLER-LIKE) FOR TRANSITS DETECTION

PREPARATORY ACTIVITIES:

- TO SELECT THE FIELD: TO IDENTIFY AREAS WITH LOW EXTINCTION TO TRACK EXOPLANETS IN LYA
- TO OPTIMIZE THE SURVEYING METHODOLOGY FOR TRANSITS

DETECTABILITY OF A TRANSITING EARTH-LIKE PLANET IN Ly α

